Serveur d'exploration sur la COVID en France

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Synergistic antiviral effect of hydroxychloroquine and azithromycin in combination against SARS-CoV-2: What molecular dynamics studies of virus-host interactions reveal.

Identifieur interne : 000535 ( Main/Exploration ); précédent : 000534; suivant : 000536

Synergistic antiviral effect of hydroxychloroquine and azithromycin in combination against SARS-CoV-2: What molecular dynamics studies of virus-host interactions reveal.

Auteurs : Jacques Fantini [France] ; Henri Chahinian [France] ; Nouara Yahi [France]

Source :

RBID : pubmed:32405156

Descripteurs français

English descriptors

Abstract

The emergence of SARS-coronavirus-2 (SARS-CoV-2) has led to a global pandemic disease referred to as coronavirus disease 19 (COVID-19). Hydroxychloroquine (CLQ-OH)/azithromycin (ATM) combination therapy is currently being tested for the treatment of COVID-19, with promising results. However, the molecular mechanism of action of this combination is not yet established. Using molecular dynamics (MD) simulations, this study shows that the drugs act in synergy to prevent any close contact between the virus and the plasma membrane of host cells. Unexpected molecular similarity is shown between ATM and the sugar moiety of GM1, a lipid raft ganglioside acting as a host attachment cofactor for respiratory viruses. Due to this mimicry, ATM interacts with the ganglioside-binding domain of SARS-CoV-2 spike protein. This binding site shared by ATM and GM1 displays a conserved amino acid triad Q-134/F-135/N-137 located at the tip of the spike protein. CLQ-OH molecules are shown to saturate virus attachment sites on gangliosides in the vicinity of the primary coronavirus receptor, angiotensin-converting enzyme-2 (ACE-2). Taken together, these data show that ATM is directed against the virus, whereas CLQ-OH is directed against cellular attachment cofactors. We conclude that both drugs act as competitive inhibitors of SARS-CoV-2 attachment to the host-cell membrane. This is consistent with a synergistic antiviral mechanism at the plasma membrane level, where therapeutic intervention is likely to be most efficient. This molecular mechanism may explain the beneficial effects of CLQ-OH/ATM combination therapy in patients with COVID-19. Incidentally, the data also indicate that the conserved Q-134/F-135/N-137 triad could be considered as a target for vaccine strategies.

DOI: 10.1016/j.ijantimicag.2020.106020
PubMed: 32405156
PubMed Central: PMC7219429


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Synergistic antiviral effect of hydroxychloroquine and azithromycin in combination against SARS-CoV-2: What molecular dynamics studies of virus-host interactions reveal.</title>
<author>
<name sortKey="Fantini, Jacques" sort="Fantini, Jacques" uniqKey="Fantini J" first="Jacques" last="Fantini">Jacques Fantini</name>
<affiliation wicri:level="3">
<nlm:affiliation>INSERM UMR_S 1072, 13015 Marseille, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>INSERM UMR_S 1072, 13015 Marseille</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Provence-Alpes-Côte d'Azur</region>
<settlement type="city">Marseille</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Chahinian, Henri" sort="Chahinian, Henri" uniqKey="Chahinian H" first="Henri" last="Chahinian">Henri Chahinian</name>
<affiliation wicri:level="4">
<nlm:affiliation>Aix-Marseille Université, 13015 Marseille, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Aix-Marseille Université, 13015 Marseille</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Provence-Alpes-Côte d'Azur</region>
<settlement type="city">Marseille</settlement>
</placeName>
<orgName type="university">Université d'Aix-Marseille</orgName>
</affiliation>
</author>
<author>
<name sortKey="Yahi, Nouara" sort="Yahi, Nouara" uniqKey="Yahi N" first="Nouara" last="Yahi">Nouara Yahi</name>
<affiliation wicri:level="4">
<nlm:affiliation>Aix-Marseille Université, 13015 Marseille, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Aix-Marseille Université, 13015 Marseille</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Provence-Alpes-Côte d'Azur</region>
<settlement type="city">Marseille</settlement>
</placeName>
<orgName type="university">Université d'Aix-Marseille</orgName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32405156</idno>
<idno type="pmid">32405156</idno>
<idno type="doi">10.1016/j.ijantimicag.2020.106020</idno>
<idno type="pmc">PMC7219429</idno>
<idno type="wicri:Area/Main/Corpus">001310</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001310</idno>
<idno type="wicri:Area/Main/Curation">001310</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001310</idno>
<idno type="wicri:Area/Main/Exploration">001310</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Synergistic antiviral effect of hydroxychloroquine and azithromycin in combination against SARS-CoV-2: What molecular dynamics studies of virus-host interactions reveal.</title>
<author>
<name sortKey="Fantini, Jacques" sort="Fantini, Jacques" uniqKey="Fantini J" first="Jacques" last="Fantini">Jacques Fantini</name>
<affiliation wicri:level="3">
<nlm:affiliation>INSERM UMR_S 1072, 13015 Marseille, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>INSERM UMR_S 1072, 13015 Marseille</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Provence-Alpes-Côte d'Azur</region>
<settlement type="city">Marseille</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Chahinian, Henri" sort="Chahinian, Henri" uniqKey="Chahinian H" first="Henri" last="Chahinian">Henri Chahinian</name>
<affiliation wicri:level="4">
<nlm:affiliation>Aix-Marseille Université, 13015 Marseille, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Aix-Marseille Université, 13015 Marseille</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Provence-Alpes-Côte d'Azur</region>
<settlement type="city">Marseille</settlement>
</placeName>
<orgName type="university">Université d'Aix-Marseille</orgName>
</affiliation>
</author>
<author>
<name sortKey="Yahi, Nouara" sort="Yahi, Nouara" uniqKey="Yahi N" first="Nouara" last="Yahi">Nouara Yahi</name>
<affiliation wicri:level="4">
<nlm:affiliation>Aix-Marseille Université, 13015 Marseille, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Aix-Marseille Université, 13015 Marseille</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Provence-Alpes-Côte d'Azur</region>
<settlement type="city">Marseille</settlement>
</placeName>
<orgName type="university">Université d'Aix-Marseille</orgName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">International journal of antimicrobial agents</title>
<idno type="eISSN">1872-7913</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Sequence (MeSH)</term>
<term>Antiviral Agents (chemistry)</term>
<term>Antiviral Agents (pharmacology)</term>
<term>Azithromycin (chemistry)</term>
<term>Azithromycin (pharmacology)</term>
<term>Betacoronavirus (drug effects)</term>
<term>Betacoronavirus (growth & development)</term>
<term>Betacoronavirus (metabolism)</term>
<term>Binding Sites (MeSH)</term>
<term>Coronavirus Infections (drug therapy)</term>
<term>Coronavirus Infections (virology)</term>
<term>Drug Synergism (MeSH)</term>
<term>G(M1) Ganglioside (antagonists & inhibitors)</term>
<term>G(M1) Ganglioside (chemistry)</term>
<term>G(M1) Ganglioside (metabolism)</term>
<term>Gene Expression (MeSH)</term>
<term>Host-Pathogen Interactions (drug effects)</term>
<term>Host-Pathogen Interactions (genetics)</term>
<term>Host-Pathogen Interactions (immunology)</term>
<term>Humans (MeSH)</term>
<term>Hydroxychloroquine (chemistry)</term>
<term>Hydroxychloroquine (pharmacology)</term>
<term>Kinetics (MeSH)</term>
<term>Molecular Docking Simulation (MeSH)</term>
<term>Molecular Dynamics Simulation (MeSH)</term>
<term>Pandemics (MeSH)</term>
<term>Peptidyl-Dipeptidase A (chemistry)</term>
<term>Peptidyl-Dipeptidase A (genetics)</term>
<term>Peptidyl-Dipeptidase A (metabolism)</term>
<term>Pneumonia, Viral (drug therapy)</term>
<term>Pneumonia, Viral (virology)</term>
<term>Protein Binding (MeSH)</term>
<term>Protein Conformation, alpha-Helical (MeSH)</term>
<term>Protein Conformation, beta-Strand (MeSH)</term>
<term>Protein Interaction Domains and Motifs (MeSH)</term>
<term>Sequence Alignment (MeSH)</term>
<term>Sequence Homology, Amino Acid (MeSH)</term>
<term>Spike Glycoprotein, Coronavirus (antagonists & inhibitors)</term>
<term>Spike Glycoprotein, Coronavirus (chemistry)</term>
<term>Spike Glycoprotein, Coronavirus (genetics)</term>
<term>Spike Glycoprotein, Coronavirus (metabolism)</term>
<term>Thermodynamics (MeSH)</term>
<term>Virus Attachment (drug effects)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Alignement de séquences (MeSH)</term>
<term>Antiviraux (composition chimique)</term>
<term>Antiviraux (pharmacologie)</term>
<term>Attachement viral (effets des médicaments et des substances chimiques)</term>
<term>Azithromycine (composition chimique)</term>
<term>Azithromycine (pharmacologie)</term>
<term>Betacoronavirus (croissance et développement)</term>
<term>Betacoronavirus (effets des médicaments et des substances chimiques)</term>
<term>Betacoronavirus (métabolisme)</term>
<term>Cinétique (MeSH)</term>
<term>Expression des gènes (MeSH)</term>
<term>Ganglioside GM1 (antagonistes et inhibiteurs)</term>
<term>Ganglioside GM1 (composition chimique)</term>
<term>Ganglioside GM1 (métabolisme)</term>
<term>Glycoprotéine de spicule des coronavirus (antagonistes et inhibiteurs)</term>
<term>Glycoprotéine de spicule des coronavirus (composition chimique)</term>
<term>Glycoprotéine de spicule des coronavirus (génétique)</term>
<term>Glycoprotéine de spicule des coronavirus (métabolisme)</term>
<term>Humains (MeSH)</term>
<term>Hydroxychloroquine (composition chimique)</term>
<term>Hydroxychloroquine (pharmacologie)</term>
<term>Infections à coronavirus (traitement médicamenteux)</term>
<term>Infections à coronavirus (virologie)</term>
<term>Interactions hôte-pathogène (effets des médicaments et des substances chimiques)</term>
<term>Interactions hôte-pathogène (génétique)</term>
<term>Interactions hôte-pathogène (immunologie)</term>
<term>Liaison aux protéines (MeSH)</term>
<term>Motifs et domaines d'intéraction protéique (MeSH)</term>
<term>Pandémies (MeSH)</term>
<term>Peptidyl-Dipeptidase A (composition chimique)</term>
<term>Peptidyl-Dipeptidase A (génétique)</term>
<term>Peptidyl-Dipeptidase A (métabolisme)</term>
<term>Pneumopathie virale (traitement médicamenteux)</term>
<term>Pneumopathie virale (virologie)</term>
<term>Similitude de séquences d'acides aminés (MeSH)</term>
<term>Simulation de docking moléculaire (MeSH)</term>
<term>Simulation de dynamique moléculaire (MeSH)</term>
<term>Sites de fixation (MeSH)</term>
<term>Structure en brin bêta (MeSH)</term>
<term>Structure en hélice alpha (MeSH)</term>
<term>Synergie des médicaments (MeSH)</term>
<term>Séquence d'acides aminés (MeSH)</term>
<term>Thermodynamique (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="antagonists & inhibitors" xml:lang="en">
<term>G(M1) Ganglioside</term>
<term>Spike Glycoprotein, Coronavirus</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Antiviral Agents</term>
<term>Azithromycin</term>
<term>G(M1) Ganglioside</term>
<term>Hydroxychloroquine</term>
<term>Peptidyl-Dipeptidase A</term>
<term>Spike Glycoprotein, Coronavirus</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Peptidyl-Dipeptidase A</term>
<term>Spike Glycoprotein, Coronavirus</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>G(M1) Ganglioside</term>
<term>Peptidyl-Dipeptidase A</term>
<term>Spike Glycoprotein, Coronavirus</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Antiviral Agents</term>
<term>Azithromycin</term>
<term>Hydroxychloroquine</term>
</keywords>
<keywords scheme="MESH" qualifier="antagonistes et inhibiteurs" xml:lang="fr">
<term>Ganglioside GM1</term>
<term>Glycoprotéine de spicule des coronavirus</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Antiviraux</term>
<term>Azithromycine</term>
<term>Ganglioside GM1</term>
<term>Glycoprotéine de spicule des coronavirus</term>
<term>Hydroxychloroquine</term>
<term>Peptidyl-Dipeptidase A</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Betacoronavirus</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Betacoronavirus</term>
<term>Host-Pathogen Interactions</term>
<term>Virus Attachment</term>
</keywords>
<keywords scheme="MESH" qualifier="drug therapy" xml:lang="en">
<term>Coronavirus Infections</term>
<term>Pneumonia, Viral</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Attachement viral</term>
<term>Betacoronavirus</term>
<term>Interactions hôte-pathogène</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Host-Pathogen Interactions</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Betacoronavirus</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Glycoprotéine de spicule des coronavirus</term>
<term>Interactions hôte-pathogène</term>
<term>Peptidyl-Dipeptidase A</term>
</keywords>
<keywords scheme="MESH" qualifier="immunologie" xml:lang="fr">
<term>Interactions hôte-pathogène</term>
</keywords>
<keywords scheme="MESH" qualifier="immunology" xml:lang="en">
<term>Host-Pathogen Interactions</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Betacoronavirus</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Betacoronavirus</term>
<term>Ganglioside GM1</term>
<term>Glycoprotéine de spicule des coronavirus</term>
<term>Peptidyl-Dipeptidase A</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Antiviraux</term>
<term>Azithromycine</term>
<term>Hydroxychloroquine</term>
</keywords>
<keywords scheme="MESH" qualifier="traitement médicamenteux" xml:lang="fr">
<term>Infections à coronavirus</term>
<term>Pneumopathie virale</term>
</keywords>
<keywords scheme="MESH" qualifier="virologie" xml:lang="fr">
<term>Infections à coronavirus</term>
<term>Pneumopathie virale</term>
</keywords>
<keywords scheme="MESH" qualifier="virology" xml:lang="en">
<term>Coronavirus Infections</term>
<term>Pneumonia, Viral</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Binding Sites</term>
<term>Drug Synergism</term>
<term>Gene Expression</term>
<term>Humans</term>
<term>Kinetics</term>
<term>Molecular Docking Simulation</term>
<term>Molecular Dynamics Simulation</term>
<term>Pandemics</term>
<term>Protein Binding</term>
<term>Protein Conformation, alpha-Helical</term>
<term>Protein Conformation, beta-Strand</term>
<term>Protein Interaction Domains and Motifs</term>
<term>Sequence Alignment</term>
<term>Sequence Homology, Amino Acid</term>
<term>Thermodynamics</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Alignement de séquences</term>
<term>Cinétique</term>
<term>Expression des gènes</term>
<term>Humains</term>
<term>Liaison aux protéines</term>
<term>Motifs et domaines d'intéraction protéique</term>
<term>Pandémies</term>
<term>Similitude de séquences d'acides aminés</term>
<term>Simulation de docking moléculaire</term>
<term>Simulation de dynamique moléculaire</term>
<term>Sites de fixation</term>
<term>Structure en brin bêta</term>
<term>Structure en hélice alpha</term>
<term>Synergie des médicaments</term>
<term>Séquence d'acides aminés</term>
<term>Thermodynamique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The emergence of SARS-coronavirus-2 (SARS-CoV-2) has led to a global pandemic disease referred to as coronavirus disease 19 (COVID-19). Hydroxychloroquine (CLQ-OH)/azithromycin (ATM) combination therapy is currently being tested for the treatment of COVID-19, with promising results. However, the molecular mechanism of action of this combination is not yet established. Using molecular dynamics (MD) simulations, this study shows that the drugs act in synergy to prevent any close contact between the virus and the plasma membrane of host cells. Unexpected molecular similarity is shown between ATM and the sugar moiety of GM1, a lipid raft ganglioside acting as a host attachment cofactor for respiratory viruses. Due to this mimicry, ATM interacts with the ganglioside-binding domain of SARS-CoV-2 spike protein. This binding site shared by ATM and GM1 displays a conserved amino acid triad Q-134/F-135/N-137 located at the tip of the spike protein. CLQ-OH molecules are shown to saturate virus attachment sites on gangliosides in the vicinity of the primary coronavirus receptor, angiotensin-converting enzyme-2 (ACE-2). Taken together, these data show that ATM is directed against the virus, whereas CLQ-OH is directed against cellular attachment cofactors. We conclude that both drugs act as competitive inhibitors of SARS-CoV-2 attachment to the host-cell membrane. This is consistent with a synergistic antiviral mechanism at the plasma membrane level, where therapeutic intervention is likely to be most efficient. This molecular mechanism may explain the beneficial effects of CLQ-OH/ATM combination therapy in patients with COVID-19. Incidentally, the data also indicate that the conserved Q-134/F-135/N-137 triad could be considered as a target for vaccine strategies.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">32405156</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>09</Month>
<Day>01</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>02</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1872-7913</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>56</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2020</Year>
<Month>Aug</Month>
</PubDate>
</JournalIssue>
<Title>International journal of antimicrobial agents</Title>
<ISOAbbreviation>Int. J. Antimicrob. Agents</ISOAbbreviation>
</Journal>
<ArticleTitle>Synergistic antiviral effect of hydroxychloroquine and azithromycin in combination against SARS-CoV-2: What molecular dynamics studies of virus-host interactions reveal.</ArticleTitle>
<Pagination>
<MedlinePgn>106020</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.ijantimicag.2020.106020</ELocationID>
<Abstract>
<AbstractText>The emergence of SARS-coronavirus-2 (SARS-CoV-2) has led to a global pandemic disease referred to as coronavirus disease 19 (COVID-19). Hydroxychloroquine (CLQ-OH)/azithromycin (ATM) combination therapy is currently being tested for the treatment of COVID-19, with promising results. However, the molecular mechanism of action of this combination is not yet established. Using molecular dynamics (MD) simulations, this study shows that the drugs act in synergy to prevent any close contact between the virus and the plasma membrane of host cells. Unexpected molecular similarity is shown between ATM and the sugar moiety of GM1, a lipid raft ganglioside acting as a host attachment cofactor for respiratory viruses. Due to this mimicry, ATM interacts with the ganglioside-binding domain of SARS-CoV-2 spike protein. This binding site shared by ATM and GM1 displays a conserved amino acid triad Q-134/F-135/N-137 located at the tip of the spike protein. CLQ-OH molecules are shown to saturate virus attachment sites on gangliosides in the vicinity of the primary coronavirus receptor, angiotensin-converting enzyme-2 (ACE-2). Taken together, these data show that ATM is directed against the virus, whereas CLQ-OH is directed against cellular attachment cofactors. We conclude that both drugs act as competitive inhibitors of SARS-CoV-2 attachment to the host-cell membrane. This is consistent with a synergistic antiviral mechanism at the plasma membrane level, where therapeutic intervention is likely to be most efficient. This molecular mechanism may explain the beneficial effects of CLQ-OH/ATM combination therapy in patients with COVID-19. Incidentally, the data also indicate that the conserved Q-134/F-135/N-137 triad could be considered as a target for vaccine strategies.</AbstractText>
<CopyrightInformation>© 2020 Elsevier B.V. and International Society of Chemotherapy. All rights reserved.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Fantini</LastName>
<ForeName>Jacques</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>INSERM UMR_S 1072, 13015 Marseille, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Chahinian</LastName>
<ForeName>Henri</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>Aix-Marseille Université, 13015 Marseille, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Yahi</LastName>
<ForeName>Nouara</ForeName>
<Initials>N</Initials>
<AffiliationInfo>
<Affiliation>Aix-Marseille Université, 13015 Marseille, France.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>05</Month>
<Day>13</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Netherlands</Country>
<MedlineTA>Int J Antimicrob Agents</MedlineTA>
<NlmUniqueID>9111860</NlmUniqueID>
<ISSNLinking>0924-8579</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000998">Antiviral Agents</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D064370">Spike Glycoprotein, Coronavirus</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C000657845">spike protein, SARS-CoV-2</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>37758-47-7</RegistryNumber>
<NameOfSubstance UI="D005677">G(M1) Ganglioside</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>4QWG6N8QKH</RegistryNumber>
<NameOfSubstance UI="D006886">Hydroxychloroquine</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>83905-01-5</RegistryNumber>
<NameOfSubstance UI="D017963">Azithromycin</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.4.15.1</RegistryNumber>
<NameOfSubstance UI="D007703">Peptidyl-Dipeptidase A</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.4.17.-</RegistryNumber>
<NameOfSubstance UI="C413524">angiotensin converting enzyme 2</NameOfSubstance>
</Chemical>
</ChemicalList>
<SupplMeshList>
<SupplMeshName Type="Disease" UI="C000657245">COVID-19</SupplMeshName>
<SupplMeshName Type="Organism" UI="C000656484">severe acute respiratory syndrome coronavirus 2</SupplMeshName>
</SupplMeshList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000998" MajorTopicYN="N">Antiviral Agents</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017963" MajorTopicYN="N">Azithromycin</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000073640" MajorTopicYN="N">Betacoronavirus</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="Y">drug effects</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001665" MajorTopicYN="N">Binding Sites</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018352" MajorTopicYN="N">Coronavirus Infections</DescriptorName>
<QualifierName UI="Q000188" MajorTopicYN="N">drug therapy</QualifierName>
<QualifierName UI="Q000821" MajorTopicYN="N">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004357" MajorTopicYN="N">Drug Synergism</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005677" MajorTopicYN="N">G(M1) Ganglioside</DescriptorName>
<QualifierName UI="Q000037" MajorTopicYN="N">antagonists & inhibitors</QualifierName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015870" MajorTopicYN="N">Gene Expression</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054884" MajorTopicYN="N">Host-Pathogen Interactions</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006886" MajorTopicYN="N">Hydroxychloroquine</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007700" MajorTopicYN="N">Kinetics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D062105" MajorTopicYN="N">Molecular Docking Simulation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D056004" MajorTopicYN="N">Molecular Dynamics Simulation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058873" MajorTopicYN="N">Pandemics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007703" MajorTopicYN="N">Peptidyl-Dipeptidase A</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011024" MajorTopicYN="N">Pneumonia, Viral</DescriptorName>
<QualifierName UI="Q000188" MajorTopicYN="N">drug therapy</QualifierName>
<QualifierName UI="Q000821" MajorTopicYN="N">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011485" MajorTopicYN="N">Protein Binding</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000072756" MajorTopicYN="N">Protein Conformation, alpha-Helical</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000072757" MajorTopicYN="N">Protein Conformation, beta-Strand</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054730" MajorTopicYN="N">Protein Interaction Domains and Motifs</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016415" MajorTopicYN="N">Sequence Alignment</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017386" MajorTopicYN="N">Sequence Homology, Amino Acid</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D064370" MajorTopicYN="N">Spike Glycoprotein, Coronavirus</DescriptorName>
<QualifierName UI="Q000037" MajorTopicYN="N">antagonists & inhibitors</QualifierName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013816" MajorTopicYN="N">Thermodynamics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053585" MajorTopicYN="N">Virus Attachment</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">ACE-2, angiotensin-converting enzyme-2</Keyword>
<Keyword MajorTopicYN="N">ATM, azithromycin</Keyword>
<Keyword MajorTopicYN="N">Azithromycin</Keyword>
<Keyword MajorTopicYN="N">CLQ, chloroquine</Keyword>
<Keyword MajorTopicYN="N">CLQ-OH, hydroxychloroquine</Keyword>
<Keyword MajorTopicYN="N">COVID-19, coronavirus disease 19</Keyword>
<Keyword MajorTopicYN="N">Chloroquine</Keyword>
<Keyword MajorTopicYN="N">Coronavirus</Keyword>
<Keyword MajorTopicYN="N">Ganglioside</Keyword>
<Keyword MajorTopicYN="N">NTD, N-terminal domain</Keyword>
<Keyword MajorTopicYN="N">Pandemic</Keyword>
<Keyword MajorTopicYN="N">RBD, receptor binding domain</Keyword>
<Keyword MajorTopicYN="N">SARS-CoV, severe acute respiratory syndrome coronavirus</Keyword>
<Keyword MajorTopicYN="N">SARS-CoV-2</Keyword>
<Keyword MajorTopicYN="N">SARS-CoV-2, SARS-coronavirus-2</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2020</Year>
<Month>04</Month>
<Day>03</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>05</Month>
<Day>04</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>5</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>9</Month>
<Day>2</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>5</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32405156</ArticleId>
<ArticleId IdType="pii">106020</ArticleId>
<ArticleId IdType="doi">10.1016/j.ijantimicag.2020.106020</ArticleId>
<ArticleId IdType="pii">106020</ArticleId>
<ArticleId IdType="pmc">PMC7219429</ArticleId>
</ArticleIdList>
<pmc-dir>pmcsd</pmc-dir>
<ReferenceList>
<Reference>
<Citation>PLoS One. 2014 Aug 20;9(8):e104751</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25140899</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Mol Biol. 2017;1583:7-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28205163</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2008 Apr 1;105(13):5219-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18353982</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Infect Dis. 2020 Jul 28;71(15):732-739</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32150618</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biosci Trends. 2020 Mar 16;14(1):72-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32074550</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2017 Oct 3;114(40):E8508-E8517</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28923942</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Rheumatol. 2020 Mar;16(3):155-166</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32034323</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Expert Rev Mol Med. 2002 Dec 20;4(27):1-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14987385</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Top Curr Chem. 2015;367:1-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23873408</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2011 Oct;1808(10):2343-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21756873</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2018 Jan 9;9(1):112</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29317655</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virol J. 2005 Aug 22;2:69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16115318</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2020 Mar 27;367(6485):1444-1448</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32132184</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2008 May 2;369(2):344-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18279660</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2008 Nov 25;381(2):215-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18814896</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Expert Opin Drug Saf. 2017 Mar;16(3):411-419</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27927040</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ChemMedChem. 2016 Feb 4;11(3):277-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26616259</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Invest. 2014 Feb;124(2):712-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24463447</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Theory Comput. 2019 Jan 8;15(1):775-786</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30525595</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2020 Mar 13;367(6483):1260-1263</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32075877</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Struct Mol Biol. 2019 Dec;26(12):1151-1157</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31792450</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Viruses. 2018 Nov 18;10(11):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30453689</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1998 Apr 3;273(14):7967-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9525894</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2019 Sep 3;116(36):18098-18108</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31431523</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Res. 2020 Mar;30(3):269-271</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32020029</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Antimicrob Agents. 2020 May;55(5):105960</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32251731</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1999 Jun;73(6):5244-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10233996</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuron. 2018 Sep 19;99(6):1129-1143</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30236283</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Discov. 2020 Mar 18;6:16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32194981</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2013;4:2058</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23807078</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Antimicrob Agents. 2020 Apr;55(4):105932</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32145363</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2016 Jun 29;6:28781</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27352802</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Lab Anal. 1994;8(6):378-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7869176</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Antibiot (Tokyo). 2019 Oct;72(10):759-768</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31300721</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2016 Feb 26;6:21907</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26915987</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Physiol. 2013 Jun 10;4:120</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23772214</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Autophagy. 2018;14(8):1435-1455</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29940786</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Antimicrob Agents. 2020 Jul;56(1):105949</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32205204</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2020 Mar;579(7798):265-269</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32015508</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>France</li>
</country>
<region>
<li>Provence-Alpes-Côte d'Azur</li>
</region>
<settlement>
<li>Marseille</li>
</settlement>
<orgName>
<li>Université d'Aix-Marseille</li>
</orgName>
</list>
<tree>
<country name="France">
<region name="Provence-Alpes-Côte d'Azur">
<name sortKey="Fantini, Jacques" sort="Fantini, Jacques" uniqKey="Fantini J" first="Jacques" last="Fantini">Jacques Fantini</name>
</region>
<name sortKey="Chahinian, Henri" sort="Chahinian, Henri" uniqKey="Chahinian H" first="Henri" last="Chahinian">Henri Chahinian</name>
<name sortKey="Yahi, Nouara" sort="Yahi, Nouara" uniqKey="Yahi N" first="Nouara" last="Yahi">Nouara Yahi</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/CovidFranceV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000535 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000535 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    CovidFranceV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32405156
   |texte=   Synergistic antiviral effect of hydroxychloroquine and azithromycin in combination against SARS-CoV-2: What molecular dynamics studies of virus-host interactions reveal.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32405156" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a CovidFranceV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Tue Oct 6 23:31:36 2020. Site generation: Fri Feb 12 22:48:37 2021